Skip to content

HA(高可用)-Hadoop集群环境搭建

一、前置准备

jdk8安装

Zookeeper集群环境搭建

二、集群规划

图片

三、集群配置

先创建好所需目录

bash
$ mkdir -p /data/hadoop/tmp
$ mkdir -p /data/hadoop/dfs/journalnode_data
$ mkdir -p /data/hadoop/dfs/edits
$ mkdir -p /data/hadoop/dfs/datanode_data
$ mkdir -p /data/hadoop/dfs/namenode_data

1. hadoop-env.sh

bash
export JAVA_HOME=/opt/moudle/jdk
export HADOOP_CONF_DIR=/data/hadoop/etc/hadoop

2. core-site.xml

xml
<configuration>
    <property>
        <!--指定hadoop集群在zookeeper上注册的节点名-->
        <name>fs.defaultFS</name>
        <value>hdfs://hacluster</value>
    </property>  
    <property>
        <!--用来指定hadoop运行时产生文件的存放目录-->   
        <name>hadoop.tmp.dir</name>
        <value>file:///data/hadoop/tmp</value>
    </property>
    <property>
        <!--设置缓存大小,默认4kb-->
        <name>io.file.buffer.size</name>
        <value>4096</value>
    </property>
    <property>
        <!--指定zookeeper的存放地址 -->
        <name>ha.zookeeper.quorum</name>
        <value>hadoop01:2181,hadoop02:2181,hadoop03:2181</value>
    </property>
</configuration>

3. hdfs-site.xml

xml
<configuration>
    <property>
        <!--数据块默认大小128M-->
        <name>dfs.block.size</name>
        <value>134217728</value>
    </property>
    <property>
        <!--副本数量,不配置的话默认为3-->
        <name>dfs.replication</name> 
        <value>3</value>
    </property>
    <property>
        <!--namenode节点数据(元数据)的存放位置-->
        <name>dfs.name.dir</name> 
        <value>file:///data/hadoop/dfs/namenode_data</value>
    </property>
    <property>
        <!--datanode节点数据(元数据)的存放位置-->
        <name>dfs.data.dir</name> 
        <value>file:///data/hadoop/dfs/datanode_data</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>dfs.datanode.max.transfer.threads</name>
        <value>4096</value>
        </property>
    <property>
        <!--指定hadoop集群在zookeeper上注册的节点名-->
        <name>dfs.nameservices</name>
        <value>hacluster</value>
    </property>
    <property>
        <!-- hacluster集群下有两个namenode,分别为nn1,nn2 -->
        <name>dfs.ha.namenodes.hacluster</name>
        <value>nn1,nn2</value>
    </property>
    <!-- nn1的rpc、servicepc和http通信 -->
    <property>
        <name>dfs.namenode.rpc-address.hacluster.nn1</name>
        <value>hadoop01:9000</value>
    </property> 
    <property>
        <name>dfs.namenode.servicepc-address.hacluster.nn1</name>
        <value>hadoop01:53310</value>
    </property>
    <property>
        <name>dfs.namenode.http-address.hacluster.nn1</name> 
        <value>hadoop01:50070</value>
    </property>
    <!-- nn2的rpc、servicepc和http通信 -->
    <property>
        <name>dfs.namenode.rpc-address.hacluster.nn2</name>
        <value>hadoop02:9000</value>
    </property>
    <property>
        <name>dfs.namenode.servicepc-address.hacluster.nn2</name>
        <value>hadoop02:53310</value>
    </property>
    <property>
        <name>dfs.namenode.http-address.hacluster.nn2</name>
        <value>hadoop02:50070</value>
    </property>
    <property>
        <!-- 指定namenode的元数据在JournalNode上存放的位置 -->
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://hadoop01:8485;hadoop02:8485;hadoop03:8485/hacluster</value>
    </property>
    <property>
        <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
        <name>dfs.journalnode.edits.dir</name>
        <value>/data/hadoop/dfs/journalnode_data</value>
    </property>
    <property>
        <!-- namenode操作日志的存放位置 -->
        <name>dfs.namenode.edits.dir</name>
        <value>/data/hadoop/dfs/edits</value>
    </property>
    <property>
        <!-- 开启namenode故障转移自动切换 -->
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value> 
    </property>
    <property>
        <!-- 配置失败自动切换实现方式 -->
        <name>dfs.client.failover.proxy.provider.hacluster</name>
            <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>    
    <property>
        <!-- 配置隔离机制 -->
        <name>dfs.ha.fencing.methods</name>
        <value>sshfence</value>
    </property>
    <property>
        <!-- 使用隔离机制需要SSH免密登录 -->
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/root/.ssh/id_rsa</value>
    </property>
    <property>
        <!--hdfs文件操作权限,false为不验证-->
        <name>dfs.permissions</name> 
        <value>false</value>
    </property>
</configuration>

4. mapred-site.xml

xml
<configuration>
    <property>  
        <!--指定mapreduce运行在yarn上-->
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <!--配置任务历史服务器地址-->
        <name>mapreduce.jobhistory.address</name>
        <value>hadoop01:10020</value>
    </property>
    <property>
        <!--配置任务历史服务器web-UI地址-->
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>hadoop01:19888</value>
    </property>
    <property>
        <!--开启uber模式-->
        <name>mapreduce.job.ubertask.enable</name>
        <value>true</value>
    </property>
</configuration>

5. yarn-site.xml

xml
<configuration>
    <property>
        <!-- 开启Yarn高可用 -->
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
    <property>
        <!-- 指定Yarn集群在zookeeper上注册的节点名 -->
        <name>yarn.resourcemanager.cluster-id</name>
        <value>hayarn</value>
    </property>
    <property>
        <!-- 指定两个ResourceManager的名称 -->
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property> 
    <property>
        <!-- 指定rm1的主机 -->
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop02</value>
    </property>              
    <property>
        <!-- 指定rm2的主机 -->
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop03</value>
    </property> 
    <property>
        <!-- 配置zookeeper的地址 -->
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop01:2181,hadoop02:2181,hadoop03:2181</value>
    </property>    
    <property>
        <!-- 开启Yarn恢复机制 -->
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property> 
    <property>
        <!-- 配置执行ResourceManager恢复机制实现类 -->
        <name>yarn.resourcemanager.store.class</name>
            <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>
    <property>
        <!--指定主resourcemanager的地址-->
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop03</value>
    </property>
    <property>
        <!--NodeManager获取数据的方式-->
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <!--开启日志聚集功能-->
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    <property>
        <!--配置日志保留7天-->
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>604800</value>
    </property>
</configuration>

6. slaves

bash
hadoop01
hadoop02
hadoop03

将 Hadoop 安装包分发到其他两台服务器,分发后建议在这两台服务器上也配置一下 Hadoop 的环境变量。

bash
# 将安装包分发到hadoop02
$ scp -r /data/hadoop/ root@hadoop02:/data
# 将安装包分发到hadoop03
$ scp -r /data/hadoop/ root@hadoop03:/data

四、启动集群(初始化工作)

1. 启动3个Zookeeper

bash
$ zkServer.sh start
$ zkServer.sh start
$ zkServer.sh start

2. 启动3个JournalNode

bash
$ hadoop-daemon.sh    start journalnode
$ hadoop-daemon.sh    start journalnode
$ hadoop-daemon.sh    start journalnode

3. 格式化NameNode

bash
【仅hadoop01】
$ hdfs namenode -format

4. 复制hadoop01上的NameNode的元数据到hadoop02

bash
$ scp -r /data/hadoop/dfs/namenode_data/current/ root@hadoop02:/data/hadoop/dfs/namenode_data/

5. 在NameNode节点(hadoop01或hadoop02)格式化zkfc

bash
【二者选其一即可】
$ hdfs zkfc -formatZK

$ hdfs zkfc -formatZK

6. 在hadoop01上启动HDFS相关服务

bash
$ start-dfs.sh

Starting namenodes on [hadoop01 hadoop02]
hadoop02: starting namenode, logging to /data/hadoop/logs/hadoop-root-namenode-hadoop02.out
hadoop01: starting namenode, logging to /data/hadoop/logs/hadoop-root-namenode-hadoop01.out
hadoop03: starting datanode, logging to /data/hadoop/logs/hadoop-root-datanode-hadoop03.out
hadoop02: starting datanode, logging to /data/hadoop/logs/hadoop-root-datanode-hadoop02.out
hadoop01: starting datanode, logging to /data/hadoop/logs/hadoop-root-datanode-hadoop01.out
Starting journal nodes [hadoop01 hadoop02 hadoop03]
hadoop02: journalnode running as process 7546. Stop it first.
hadoop01: journalnode running as process 7827. Stop it first.
hadoop03: journalnode running as process 7781. Stop it first.
Starting ZK Failover Controllers on NN hosts [hadoop01 hadoop02]
hadoop01: starting zkfc, logging to /data/hadoop/logs/hadoop-root-zkfc-hadoop01.out
hadoop02: starting zkfc, logging to /data/hadoop/logs/hadoop-root-zkfc-hadoop02.out

7. 在hadoop03上启动YARN相关服务

bash
$ start-yarn.sh

8. 最后单独启动hadoop01的历史任务服务器和hadoop02的ResourceManager

bash
$ mr-jobhistory-daemon.sh start historyserver
$ yarn-daemon.sh start resourcemanager

五、查看集群

1. jps进程查看

bash
$ jps
8227 QuorumPeerMain
8916 DataNode
8663 JournalNode
8791 NameNode
9035 DFSZKFailoverController
11048 JobHistoryServer
9147 NodeManager
9260 Jps

$ jps
7538 QuorumPeerMain
8214 NodeManager
7802 JournalNode
8010 DataNode
8122 DFSZKFailoverController
8346 ResourceManager
8395 Jps
7916 NameNode

$ jps
8897 Jps
8343 DataNode
8472 ResourceManager
8249 JournalNode
7994 QuorumPeerMain
8575 NodeManager

【查看NameNode的状态】
$ hdfs haadmin -getServiceState nn1
active
$ hdfs haadmin -getServiceState nn2
standby
【查看ResourceManager的状态】
$ yarn rmadmin -getServiceState rm1
standby
$ yarn rmadmin -getServiceState rm2
active

六、集群二次启动

上面的集群初次启动涉及到一些必要初始化操作,所以过程略显繁琐。但是集群一旦搭建好后,想要再次启用它是比较方便的,步骤如下(首选需要确保 ZooKeeper 集群已经启动):

hadoop01 启动 HDFS,此时会启动所有与 HDFS 高可用相关的服务,包括 NameNode、DataNode 、 JournalNode和DFSZKFailoverController:

bash
$ start-dfs.sh

hadoop03 启动 YARN:

bash
$ start-yarn.sh

这个时候 hadoop02 上的 ResourceManager 服务通常还是没有启动的,需要手动启动:

bash
$ yarn-daemon.sh start resourcemanager